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Motivation and goals

Epidemic spread depends on the underlying contact network →
why focus on small contact structures (households, workplaces...)?

• Clustering affects epidemic outcomes, and the way clustering

is achieved within the network matters (Volz et al., 2011)

• Some control measures (teleworking, school closures. . . )

target specific types of contacts (Mendez-Brito et al., 2021)

• How contacts are included in the model changes predicted

outcomes of control measures (Di Lauro et al., 2021)

⇒ Household-workplace model (Ball and Neal, 2002; Pellis

et al., 2009):

• Multiscale model (2 levels of mixing: global and local)

• Main mathematical difficulty: local level with several contact

structures.

1/29



Motivation and goals

Epidemic spread depends on the underlying contact network →
why focus on small contact structures (households, workplaces...)?

• Clustering affects epidemic outcomes, and the way clustering

is achieved within the network matters (Volz et al., 2011)

• Some control measures (teleworking, school closures. . . )

target specific types of contacts (Mendez-Brito et al., 2021)

• How contacts are included in the model changes predicted

outcomes of control measures (Di Lauro et al., 2021)

⇒ Household-workplace model (Ball and Neal, 2002; Pellis

et al., 2009):

• Multiscale model (2 levels of mixing: global and local)

• Main mathematical difficulty: local level with several contact

structures.
1/29



The household-workplace model

Local level of mixing →
households and workplaces:

• Structure size distributions

πH and πW , maximal size

nmax <∞.

• Each individual is attributed

to a household and

workplace independently

from one another and from

other individuals.
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The household-workplace model

Modified SIR model → three ways of

contamination in a population of

size K :

• General population: total of S

susceptible and I infected

individuals → infections at rate
βG
K SI .

• Within households or

workplaces: s susceptible and i

infected members → infections

at rate λX si for X ∈ {H,W }.
Distribution ν of the duration of

infectious periods.

⇒ Stochastic model of

parameters

(K , πH , πW︸ ︷︷ ︸
social structure

, λH , λW , βG , ν︸ ︷︷ ︸
epidemic

).

3/29



The household-workplace model

Modified SIR model → three ways of

contamination in a population of

size K :

• General population: total of S

susceptible and I infected

individuals → infections at rate
βG
K SI .

• Within households or

workplaces: s susceptible and i

infected members → infections

at rate λX si for X ∈ {H,W }.
Distribution ν of the duration of

infectious periods.

⇒ Stochastic model of

parameters

(K , πH , πW︸ ︷︷ ︸
social structure

, λH , λW , βG , ν︸ ︷︷ ︸
epidemic

).

3/29



Talk outline

 

Conclusion

29/30

(I) Numerical 
exploration 

‣ Impact of structure 
size distributions: 
teleworking 
strategies. 

‣ Parsimonious model 
reduction.

(II) Large 
population limit 

‣ Individual based 
model converges to 
deterministic limit. 

‣ Asymptotically exact 
epidemic dynamics.

(III) Sensitivity 
analysis 

‣ Quantify model 
parameter impact on 
epidemic model 
outputs. 

‣ Relax contact network 
assumptions.

« The epidemiological 
footprint of contact 
structures in models with 
two levels of mixing », V. 
Bansaye, F. Deslandes, M. 
Kubasch, E. Vergu (2023+)

« Large population limit 
for a multilayer SIR model 
including households and 
workplaces  », M. Kubasch 
(2023+)
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Numerical exploration



Comparison of teleworking strategies

Teleworking strategies: for a

workplace of size k , the number

of employees not teleworking

proportional to

• k → linear strategy;

• k
1
2 → sublinear strategy.

Simulations: COVID19-like

setting, French structure size

distributions.

⇒ Better performance of the

sublinear strategy.
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A parsimonious reduced model

Approximation by a uniformly mixing SIR model:
S ′ = −βSI
I ′ = βSI − γI
R ′ = γI .

⇒ How to fit the parameters?

• Removal rate γ usually known (epidemiological expertise).

• Calibrate β using the exponential growth rate (Pellis et al.,

2011), i.e. β = r + γ.
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A parsimonious reduced model

Numerical evaluation:

• Satisfying results on

epidemic peak and final size

(error generally < 5%).

• Growth rate: key parameter.

• Accuracy affected by

epidemic intensity and

proportions of infections per

layer.

Room for improvement: Precision decreases over time.

No theoretical guarantees.
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Large population limit



Introducing the structure types

Reduced models suggested in similar settings (House and Keeling,

2008; Volz et al., 2011) → epidemic at the level of structures

characterised by a type x :

x = ( n, s, i )

number of

susceptible

members

structure

size

number of

infected

members

Difficulties:

• Infected individuals correlate the epidemic states of their

household and workplace.

• Explore the random graph.
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Introducing the structure types

⇒ Solution: keep track of each infected’s remaining infectious

period (similar in spirit to Ball, Sirl, et al., 2014).

x = ( n, s, τ )

number of

susceptible

members

structure

size

remaining

infectious periods

where τ = ( τ1, . . . , τn−s︸ ︷︷ ︸
τk>0→ infectious at time t,

else already recovered.

, 0, . . . , 0︸ ︷︷ ︸
Null by default.

) ∈ Rnmax .
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Introducing the structure types

Types evolve over time:

• Continuous decay of remaining infectious periods.

• Infection event: (n, s, τ)→ (n, s − 1, τ + σen−s+1) with σ

sampled from ν and (ek)k≤nmax the canonical basis of Rnmax .

⇒ Progressive discovery of the contact network:

• Upon an infection event, uncover the household and

workplace of the newly infected.

• Update both structures’ types using the same realization of σ.
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The agent-based model for finite populations

Sequence (GK )K≥1 of random contact networks for finite

populations of size K ≥ 1:

• The household and workplace of each individual are chosen

independently from one another, and from other individuals.

• Almost sure convergence of the finite population structure size

distributions to πH and πW .

⇒ The epidemic process depends on the sampled contact network:

convergence result holds for almost every realization of (GK )K≥1.
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The agent-based model for finite populations

Sequence of realizations of the random contact network →
population of size K with:

• KH households → types xH1 (t), . . . , xHKH
(t).

• KW workplaces → types xW1 (t), . . . , xWKW
(t).

Process of interest: associated normalised counting measure

ζK = (ζH|K , ζW |K ), i.e. for X ∈ {H,W } and t ≥ 0,

ζ
X |K
t =

1

KX

KX∑
k=1

δxXk (t).

⇒ unique strong solution of a Poisson-driven SDE (Fournier and

Méléard, 2004).
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The agent-based model for finite populations

ζK = (ζH|K , ζW |K ) is the unique strong solution of the following

equation: for X ∈ {H,W },

ζ
X |K
T =

1

KX

( KX∑
j=1

δΨ(xX
j (0),T ,0) +

∑
Y∈{G ,H,W}

∫ T

0

∫
UY

IY (t−, u)∆X (u,T , t)QY (dt, du)
)
.

• Ψ(x ,T , t) : deterministic flow of remaining infectious periods.

• QY : Poisson Point process responsible for infection events.

• IY : infection rate in layer Y .

• ∆X : impact of the current infection.
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Large population convergence

Theorem 1. Assume ζK0 ⇒ η0 ∈M1 (+ some technical condition). Then

(ζK )K≥1 converges in law in D (R+,MP,1(E ))2 to η = (ηH , ηW ) defined

as the unique solution of the following system of equations.

For any X ∈ {H,W }, f ∈ C1
b(R+ × E ,R) and T ≥ 0,

〈ηXT , fT 〉 = 〈ηX0 , f0〉+

∫ T

0

〈ηXt ,Aft〉dt + λX

∫ T

0

〈ηXt , si(f It − ft)〉dt

+ λX

∫ T

0

〈ηXt , si〉
〈ηXt , s〉

〈ηXt , s(f It − ft)〉dt + βG

∫ T

0

〈ηHt , i〉
〈ηH0 ,n〉

〈ηXt , s(f It − ft)〉dt,

where

• s(x) = number of susceptibles in type x (n = size, i = infected).

• f It (x) = 〈ν, ft(j(x , ·))〉 and Aft(x) = ∂t f (t, x)−
∑n−s

k=1 ∂τk f (t, x).
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Large population convergence

Elements of proof: Tightness - Identification - Uniqueness

• State space E :

{(n, s, τ) ∈ J1, nmaxK× J0, nmaxK× Rnmax : s ≤ n; ∀j > n − s, τj = 0} .

• Related to age-structured models (Wang, 1975; Tran, 2006).

1. Tightness of (ζK )K≥1 in D(R+, (MF (E ),w))2 → Main
ingredients (Tran, 2014; Jourdain et al., 2012):

• Tightness of (〈ζX |K• , f 〉)K≥1 for f in a large enough set,

including f = 1.

• Support of the mass of ζX |K must not escape to infinity over

finite time intervals.

• Limiting values ∈ C([0,T ], (MF (E ),w))2 .
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Large population convergence

Elements of proof: Tightness - Identification - Uniqueness

1. Tightness of (ζK )K≥1 in D(R+, (MF (E ),w))2.

2. Identification: all limiting values are solution to the desired
measure-valued equation.

• Semimartingale decomposition of 〈ζX |KT , fT 〉.
• Martingale part: quadratic variation O(1/K ) in expectation:

vanishes as K →∞.

• Bounded variation part ⇒ limiting equation

Convergence of 〈ζX |KT , f 〉 for some discontinuous functions, e.g.

f (n, s, τ) =
∑n−s

k=1 1{τk>0}? → asymptotic absolute continuity.

3. Uniqueness of the solutions to the limiting equation.
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Large population convergence

Remarks:

• Not limited to the Markovian case: ν is any absolutely

continuous probability measure on R+.

• Associated to a system of non-linear, non-local transport

equations.

• Rich limiting object: detailed information on infectious

periods.

• Computational drawback: infinite dimension.

⇒ Finite-dimensional reduction based on a coarser population

description ?
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Finite-dimensional reduction

Let • ν = Exp(γ),

• η0 = η0,ε = at time 0, remaining infectious periods of

infected individuals are exponentially distributed.

⇒ Finite-dimensional reduction: dynamical system with variables

• s, i : proportion of susceptibles / infected in the population;

• nX(S ,I ): proportion of structures of type X containing S

susceptibles and I infected, for (S , I ) such that S + I ≤ nmax,

and S ≥ 2 or SI ≥ 1.
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Finite-dimensional reduction

Theorem 2. Let ε > 0. Suppose that ν = Exp(γ), and that ζK0 ⇒ η0,ε.
Then the functions of interest are characterized as the unique solution of:

d

dt
s(t) = −(τH(t) + τW (t) + βG i(t)s(t)),

d

dt
i(t) = − d

dt
s(t)− γi(t),

d

dt
nX(S,I )(t) = −

(
λXSI + τX (t)

S

s(t)
+ βG i(t)S + γI

)
nX(S,I )(t)

+ γ(I + 1)nX(S,I+1)(t)1{S+I<nmax}

+

(
λX (S + 1)(I − 1) + τX (t)

S + 1

s(t)
+ βG i(t)(S + 1)

)
nX(S+1,I−1)(t)1{I≥1},

where for X ∈ {H,W } and mX =
∑nmax

k=1 kπ
X
k ,

τX (t) =
λX
mX

∑
(S ,I )∈S

SI nX(S,I )(t).
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Finite-dimensional reduction

Elements of proof: integrating ηX over appropriate domains of

the state space to recover the dynamics of s, i , nX(S ,I ), for example:

i(t) =
1

nH
〈ηHt ,

n(·)−s(·)∑
k=1

1{τk (·)>0}〉.

Relies on the memory-less property of the exponential distribution

→ at each time, remaining infectious periods of infected belonging

to the same structure are i.i.d. Exp(γ).
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Finite-dimensional reduction

Comparison to stochastic simulations (SSA) in a large population:

Computational cost: dynamical system pertinent for numerical

explorations, despite its large dimension.
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Sensitivity to epidemic parameters

and contact network



Global sensitivity analysis

Quantify the impact of the model parameters on epidemic

outcomes ⇒ global sensitivity analysis using Sobol’s

decomposition of the variance.

General idea:

• Model parameters sampled independently from distributions

→ model outputs: random variables.

• Main effect: part of the output variance explained directly by

one given parameter.

• Total effect: part of the output variance explained by a given

parameter and its interaction with other parameters.

 Experiment design?
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Global sensitivity analysis

Structure size distributions:

• Perturbation of French household (X=H) and workplace

(X=W) size distributions πXFr .

• Mixture with beta-binomial distributions bm,v of mean m and

variance v : πX = pXπ
X
Fr + (1− pX )bm,v

• Sample independently average mX and variance vX of πX .

X = H X = W

pX (0.75, 0.8) (0.75, 0.8)

mX (2.13, 2.26) (13.06, 16.05)

vX (1.53, 1.98) (290, 339)

23/29



Global sensitivity analysis

Epidemic parameters:

• Shifted β-distributions.

• Relevant range of epidemic scenarios.
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Global sensitivity analysis

Results:

• Strong influence of βG , with little interactions.

• Small fluctuations of size distributions: no impact. 25/29



Robustness to network variations

Our contact network relies on simplifying assumptions:

• Little overlap between households and workplaces?

→ Life partners sharing a workplace (Wilson, 2015).

• Uniform mixing within structures?

→ Average number of contacts per time unit does not grow

linearly with structure size (Cauchemez et al., 2004).

→ Workplaces likely not uniformly mixing (Contreras et al., 2022;

Timpka et al., 2016).

⇒ What happens if these assumptions are relaxed?
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Robustness to network variations

Generalized household-workplace model:

1. Structure overlap: Household of size n

→ B(n, q) members work together.

2. Workplace contact density:

Workplace of size n → Erdös-Rényi

G (n, ρ(n)), where ρ is non-increasing.
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Robustness to network variations

Comparison of the generalized model and the large population

limit of the household-workplace model.

• Covid: higher growth rate, less local infections than influenza.

• Good approximation in most settings (error ≤ 5%).

• Influence of within-workplace density p > structure overlap q.
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Conclusion



Complements and perspectivesConclusion

29/30

(IV) Contamination chains 

‣ Spinal constructions for density-dependent 
population processes. 

‣ Application: contamination chains at endemic 
equilibrium?

(I) Numerical 
exploration 

‣ Impact of structure 
size distributions: 
teleworking 
strategies. 

‣ Parsimonious model 
reduction. 

‣ Control measures?

(II) Large 
population limit 

‣ Individual based 
model converges to 
deterministic limit. 

‣ Asymptotically exact 
epidemic dynamics. 

‣ Gaussian 
fluctuations?

(III) Sensitivity 
analysis 

‣ Quantify model 
parameter impact on 
epidemic model 
outputs. 

‣ Relax contact network 
assumptions. 

‣ Large perturbations 
of structure size 
distributions? 

‣ Further investigation 
of within-structure 
networks?
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Thank you for your attention
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Variety of epidemic outcomes

Scenarios for French size

distributions:

Intensity Infections
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Epidemic impact at fixed average structure size

• Workplace size

distributions with

fixed average

workplace size.

• Linear correlation of

key epidemic

characteristics and

the size distribution

variance: good proxy.



Approximation using a uniformly mixing SIR model

Comparison of simulation outputs and reduced model predictions:



Assumptions on (ζK0 )K≥1

• Same total number of infected within households and

workplaces, etc.

• For any X ∈ {H,W } and T ≥ 0, suppose that:

1.

lim
N→∞

sup
K≥1

E

[
sup

0≤t≤T

1

KX

KX∑
k=1

nmax∑
i=1

1{nXk −sXk (0)≥i, |τX
k,i (0)−t|≥N}

]
= 0.

2. For any c ∈ R, for any i ∈ J1, nmaxK,

lim
ε→0

sup
K≥1

E

[
1

KX

KX∑
k=1

1{nXk −sXk (0)≥i, |(τX
k,i (0)−T )−c|≤ε}

]
= 0.



Associated PDE system

∂tρX ,n,s(t, τ)−
∑n−s

k=1 ∂τkρX ,n,s(t, τ) = −s(λX i(τ) + ΛX (t))ρX ,n,s(t, τ)

+1{s+1≤n}(s + 1) (λX i(τ1,n−s−1) + ΛX (t)) ρX ,n,s+1(t, τ1,n−s−1)gν(τn−s)

where ΛX (t) =
λX

sX (t)

∑nmax
n=1

∑n−1
s=0

∫
Rn−s si(τ)ρX ,n,s(t, τ)dτ + βG

iH(t)
nH

,

and sX (t) =
∑nmax

n=1

∑n
s=1 ‖ρX ,n,s‖L1 ,

iX (t) =
∑nmax

n=1

∑n−1
s=0

∫
Rn−s i(τ)ρX ,n,s(t, τ)dτ .



Computational performance



Computational performance
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Sensitivity analysis: reduction performance
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